Что такое статическая система охлаждения холодильника

Какой тип компрессора лучше для холодильника

Что такое статическая система охлаждения холодильника

Многие пользователи задаются вопросом, что такое компрессор для холодильника, и как он работает. Деталь является важной частью системы охлаждения. Она поддерживает циркуляцию фреона и сжимает его, что помогает получить низкую температуру внутреннего пространства. Существует несколько типов компрессоров, отличающихся принципом работы и некоторыми другими характеристиками.

Из чего состоит и как работает компрессор

Схема охлаждающей системы включает испаритель, мотор и конденсатор. Все элементы тесно связаны между собой. Компрессор в холодильнике используется для нагнетания хладагента в капиллярные трубки. Принцип работы детали включает в себя следующие моменты:

  • извлечение паров фреона из испарителя;
  • подача хладагента в конденсатор;
  • охлаждение и сжижение газообразного хладона;
  • обеспечение движения жидкого фреона по капиллярным трубкам и фильтрам-осушителям;
  • подача сжиженного охлаждающего вещества в испаритель (здесь начинается процесс кипения, требующий получения тепловой энергии из окружающего пространства).

Течение вышеуказанных процессов способствует снижению температуры в камерах холодильника. Сжиженный хладагент приобретает газообразное состояние, цикл охлаждения начинается вновь. Устройство компрессорной установки зависит от типа деталей. Бывают следующие виды деталей:

  • Динамические. Конструкция включает в себя корпус, мотор и вентиляторы, нагнетающие хладагент.
  • Поршневые. Конструкция схожа со строением одноцилиндровых автомобильных двигателей. В состав компрессорной системы входят вал и мотор.
  • Ротационные. Стандартная конструкция подобной детали включает катящийся цилиндр, расположенный в корпусе соответствующей формы.

Динамический

В зависимости от вида вентиляторов выделяют следующие типы компрессоров в холодильнике:

  • Осевой. Принцип работы основывается на сжатии хладагента путем изменения скорости движения вещества между лопастями ротора. Фреон перемещается в сторону оси ротора.
  • Центробежный. Принцип работы компрессора холодильника основывается на возникновении разряжения на подающей стороне, в результате которого хладон попадает на лопасти вентилятора. При вращении детали фреон отводится в сторону и распределяется возле стенок корпуса компрессора. На выходе газ попадает в диффузор, где скорость движения вещества падает, а давление растет.

Классификация динамических установок производится и по следующим критериям:

  • значение конечного давления;
  • количество ступеней сжижения газа (многоступенчатые и одноступенчатые)
  • тип привода (электрический и турбинный).

Динамические компрессоры имеют следующие преимущества:

  • простота конструкции, облегчающая ремонтные работы;
  • длительный срок службы;
  • удобство использования (устройство имеет небольшие размеры, что снижает вес холодильника).

Недостатком считается низкий коэффициент полезного действия. Создавать высокое давление подобная установка не способна, значит, холодильник не сможет работать в режиме интенсивной заморозки.

Поршневой

Принцип работы такого компрессора является возвратно-поступательным. Сжатие газа обеспечивается снижением объема вещества при перемещении поршня. Поршневые системы классифицируются по следующим признакам:

  • тип привода (использующие линейные или кривошипно-шатунные механизмы);
  • расположение цилиндров (существуют вертикальные, горизонтальные или угловые детали);
  • количество ступеней сжатия (компрессор холодильника может быть одно-, двух- или трехступенчатым).

При запуске двигателя начинается движение коленчатого вала в средней части корпуса установки. Возвратно-поступательные действия поршня приводят к выведению газа из испарителя и его подаче в накопитель. Фреон покидает компрессор при разряжении и возвращается при нагнетании. Это способствует повышению давления и сжижению газа. Поршень устроен так, что при включении компрессора попеременно срабатывают впускной и расходный клапаны.

Техникой какого производителя пользуетесь дома?

Источник: https://Tehno.expert/holodilnik/kompressor.html

Устройство и принцип работы системы охлаждения двигателя

Что такое статическая система охлаждения холодильника

Помимо главной функции отвода тепла от основных узлов двигателя автомобиля, система охлаждения решает ряд дополнительных задач. Фактически она участвует в работе системы смазки, отопления салона, выхлопа и рециркуляции отработавших газов, турбонаддува и коробки передач. О том, как она устроена, а также в чем заключается принцип работы охлаждающей системы и пойдет речь далее.

Виды систем охлаждения двигателя

Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:

  • Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
  • Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
  • Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.

Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).

Устройство и принцип работы системы охлаждения ДВС

Система охлаждения двигателя

Наиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:

  • Радиатор системы охлаждения.
  • Вентилятор радиатора.
  • Малый и большой охлаждающие контуры.
  • Рубашка системы охлаждения (система каналов в блоке цилиндров).
  • Датчик температуры.
  • Термостат.
  • Расширительный бачок.
  • Насос (помпа).
  • Радиатор печки.
  • Масляный радиатор (опционально).
  • Радиатор системы рециркуляции отработавших газов (опционально).

В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает термостат и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.

Большой и малый круги циркуляции ОЖ

Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.

Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с турбонаддувом также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.

Как устроен радиатор охлаждения двигателя

Устройство радиатора системы охлаждения ДВС

Радиатор системы охлаждения ДВС состоит из следующих элементов:

  • Сердцевина. Она может быть трубчатой (вертикальные трубки овального или круглого сечения, объединенные тонкими горизонтальными пластинами), пластинчатой (изогнутые пары пластин, спаянные по краям) и сотовой (спаянные трубки с сечением в виде правильного шестиугольника).
  • Верхний бачок. Оснащен заливной горловиной с герметичной пробкой, а также патрубком для установки шланга, подводящего антифриз. В горловине выполнено отверстие для установки пароотводящей трубки. Последняя имеет паровой клапан, который открывается в случае закипания.
  • Воздушный клапан. Он необходим для наполнения радиатора воздухом после остановки двигателя. Когда охлаждающая жидкость полностью остывает, без подачи дополнительного объема воздуха в системе может возникнуть сильное разрежение, провоцирующее сдавливание трубок.
  • Нижний бачок. Оснащен патрубком для крепления шланга отвода жидкости.
  • Крепления.

Принцип работы радиатора основан на многоуровневой циркуляции воздуха в его сердцевине, что делает снижение температуры охлаждающей жидкости, проходящей через него, более интенсивным.

Наиболее эффективными являются радиаторы пластинчатого типа, но они подвержены быстрому загрязнению, а потому самой популярной конструкцией стали трубчатые.

Особенности работы датчика температуры ОЖ

Датчик температуры системы охлаждения

Температурный датчик позволяет контролировать состояние системы. Определить, где находится датчик температуры охлаждающей жидкости просто: как правило, он расположен в канале головки блока цилиндров. Он представляет собой терморезистор в герметичном корпусе, который может быть изготовлен из бронзы, пластика и латуни. На корпусе имеется резьба для установки в канал.

ЭТО ИНТЕРЕСНО:  Кто производит холодильники Аристон

Принцип работы датчика основан на следующем эффекте: при повышении температуры сопротивление чувствительного элемента снижается, а при ее уменьшении увеличивается. Показатель сопротивления передается на электронный блок управления двигателем.

Чтобы при этом данные состояния охлаждающей жидкости были точными, датчик должен быть полностью погружен в нее. При температуре 100°C сопротивление датчика температуры охлаждающей жидкости должно быть порядка 177 Ом. С учетом погрешностей измерения допускается показатель сопротивления 190 Ом.

Если же отклонения больше допустимых, датчик необходимо заменить.

В некоторых моделях автомобилей может быть предусмотрено два датчика температуры. Один отвечает исключительно за включение вентилятора радиатора, а второй представляет собой датчик указателя текущей температуры охлаждающей жидкости.

Что используют в качестве охлаждающих жидкостей

Расширительный бачок системы охлаждения

В роли рабочей жидкости в системах охлаждения изначально применялась дистиллированная или деионизированная вода. Однако для современных двигателей она не обеспечивает нужный диапазон рабочих температур.

Помимо этого, она склонна к коррозионной активности в отношении металлов, что снижает срок эксплуатации системы охлаждения. Для устранения этих недостатков в качестве охлаждающей жидкости сегодня применяются составы со специальными присадками (этиленгликоль, ингибиторы коррозии), что повышает характеристики всей системы.

Чаще всего используется антифриз, который имеет более низкий порог замерзания.

При возникновении ситуации, когда требуется экстренный долив охлаждающей жидкости, можно использовать обычную чистую воду. Однако для корректной работы системы при первой возможности такой раствор необходимо заменить на качественный антифриз.

Замена охлаждающей жидкости проводится каждые 60-100 тысяч километров пробега. В охлажденном состоянии (при выключенном двигателе) ее количество должно быть на уровне нижнего края патрубка расширительного бачка охлаждающей системы. Для удобства на нем выполнены отметки “Min” и “Max”. Когда количество жидкости ниже минимальной отметки – выполняют долив. Если после работы уровень вновь упал – это свидетельствует о разгерметизации системы.

Значимость системы охлаждения двигателя не вызывает сомнений. А потому стоит регулярно проводить профилактический осмотр ее основных узлов. Это позволит избежать перегрева двигателя и возникновения критических поломок.

(5 2,80 из 5)

Вам также может понравиться

Источник: https://TechAutoPort.ru/dvigatel/sistema-ohlazhdeniya/sistema-ohlazhdeniya-dvigatelya.html

Что такое система «No Frost»?

Что такое статическая система охлаждения холодильника

Для многих моделей современных холодильных аппаратов характерно наличие систем принудительной циркуляции воздуха, предназначенных для следующих целей:

  • прокачка воздуха через испаритель, вынесенный за пределы холодильной или морозильной камеры для исключения образования инея в самой камере (система No Frost и ее модификации);
  • обеспечение равномерной циркуляции воздуха в объеме холодильной или морозильной камеры для создания равномерного поля температур.

Система No Frost

Система принудительной прокачки воздуха через испаритель, вынесенный за пределы морозильной камеры, была разработана и запатентована специалистами заводов Zerowatt входящих в промышленную группу Candy.

Под названием Frost Free эту систему можно встретить в холодильниках торговых марок указанной группы: Candy, Hoover, Iberna.

В последнее время наряду с Frost Free разными производителями все чаще употребляется более общепринятое название No Frost, а под Frost Free специалисты Candy подразумевают систему принудительной вентиляции только в морозильном отделении.

Система «No Frost» («Без инея») показана на примере вертикального морозильника AEG на рис. 1.

Рис. 1 Система No Frost вертикального морозильника:
1 — вентилятор; 2 — испаритель; 3 — компрессор; 4 — наружный теплообменник (конденсатор хладагента); 5 — сток водного конденсата; 6 — поддон сбора конденсата

Холодный воздух с помощью вентилятора 1 равномерно распределяется по объему отделения и выносит влагу (которая и служит причиной образования инея) к испарителю 2 находящемуся за пределами морозильной камеры, где и происходит намерзание влаги.

Автоматика холодильника периодически производит оттаивание испарителя (работа вентилятора на это время прекращается), талая вода стекает в поддон 6 и испаряется.

Таким образом, в морозильном отделении не образуется лед и отпадает необходимость в размораживании.

В ряде моделей имеется система каналов для подачи воздуха не только в морозильное, но и в холодильное отделение (рис. 2.).

Рис. 2. Система No Frost двухкамерного холодильника.

Для обозначения такой схемы употребляют термины Total No Frost, Full No Frost.

Наличие системы «No Frost» приводит к повышению энергопотребления холодильника по сравнению со статической системой охлаждения. В табл. 1 приведены параметры моделей, близких по объему камеры, но отличающихся системой охлаждения. Видно, что появление системы «No Frost» понижает класс энергопотребления модели на 1 — 3 ступени. Заметно также некоторое снижение объема морозильной камеры за счет установки в на системы «No Frost».

Таблица 1. Параметры энергопотребления холодильников со статической системой охлаждения и системой No Frost

МаркаМодельОбъем холодильной/морозильной камеры, лСистема охлажденияЭнергопотребление, кВтч/годКласс энергопотребленияМорозильники
Indesit RG 2330 W 265/75 Статическая 441 B
Indesit RG 2330 NF 265/60 No Frost 620 E
Siemens KG 36 E 04 237/90 Статическая 350 A
Siemens KK 33 U 01 237/74 No Frost 412 B
AEG OKO-Arctis Super 2772 GS 262 Статическая 329 B
AEG OKO-Arctis Super 2794GA 261 No Frost 460 C

Недостатком системы «No Frost» является также то, что картина воздушных течений в камере и, следовательно, эффективность смывания различных ее зон холодным потоком зависит от степени и характера загрузки холодильника продуктами. Система «No Frost» предъявляет определенные требования к упаковке продуктов, так как при отсутствии упаковки принудительная циркуляция воздуха приводит к обезвоживанию продуктов.

Некоторые фирмы-производители устанавливают независимые системы «No Frost» в морозильном и в холодильном отделениях. На рис. 3 и 4 приведены схемы Twin Cooling System фирмы Samsung для вариантов независимого охлаждения холодильника и морозильника в компоновках side-by-side (рис. 2, а) с верхним (рис. 3, б) и нижним расположением морозильника (рис. 4).

а)


Рис. 3
 Система Twin Cooling System фирмы Samsung:
а) в холодильнике side-by-side; б) в аппарате с верхним расположением морозильной камеры

Рис. 4 Система Twin Cooling System фирмы Samsung  
в аппарате с нижним расположением морозильной камеры

Примеры холодильных аппаратов с системой «No Frost» в обоих отделениях: Samsung SR-S27FTA, SR-S25FTA, SR-S24FTA, SR-L678EV, SR-L628EV; Ariston ETDF 450 XNF; Whirlpool ARG 497, ARG 477 DD, ARG 468 DD.

Системы циркуляции воздуха в отделениях

Для решения проблемы создания равномерного поля температуры в холодильном или морозильном отделениях фирмы-производители совершенствуют организацию воздушных потоков.

На рис. 5 показана система Super-X-Flow фирмы Samsung, представляющая собой вертикальный шнековый вентилятор, установленный на задней стенке холодильного отделения и создающий вихревые потоки воздуха, ось которых направлена вертикально.

Обычная холодильная камера Система Super-X-Flow

Рис. 5 Система Super-X-Flow фирмы Samsung

На рис. 6 показана система Air Shower той же фирмы, создающая в морозильной камере«воздушный душ». По информации фирмы Samsung благодаря воздушному душу скорость заморозки продуктов в камере увеличивается в два раза: время заморозки в обычной камере составляет 166,3 мин, а в камере с «воздушным душем» — 86,5 мин.

Обычная морозильная камера Система Air Shower

Рис. 6 Система Air Shower фирмы Samsung

Системы Super-X-Flow и Air Shower совместно устанавливаются, например, в таких моделях холодильников, как Samsung SR-V57 и SR-52NXA, а только система Super-X-Flow — в моделях SR-39NXB, SR-L678EV, SR(G)-V43, SR(G)-V39 и других.

Ряд фирм-производителей разрабатывает системы организации многоуровневых потоков в холодильном отделении. У фирмы Samsung это система Multi-Flow (рис. 7), которой комплектуются холодильники с двойной системой охлаждения.

Рис. 7 Система Multi-Flow фирмы Samsung

Фирма Merloni Elettrodomestici устанавливает в холодильниках марки Ariston систему A.I.R.(Ariston Integrated Refrigeration) (рис. 8), которая позволяет поддерживать постоянную температуру по объему холодильного отделения и быстро восстанавливать температуру в нем дажепри частом открывании двери.

Рис. 8 Система A.I.R. фирмы Merloni Elettrodomestici S.p.A.:
А — поток охлажденного воздуха; В — теплый воздух.

Как показано на рис. 8, поток охлажденного воздуха А направлен книзу, а теплый воздух В поступает в кольцевой воздухозаборник сверху. Наличие системы принудительной вентиляции в холодильном отделении отражается буквой V в обозначении модели, например: Ariston ERFV 402 X, ERFV 383 X, EDFV 450 X.

Аналогичной цели служат система принудительной циркуляции воздуха в холодильном отделении DAC (Dynamic Air Cooling), применяемая в холодильниках Zanussi серии Rondo (рис. 9)

Рис. 9 Система DAC фирмы Zanussi

А также система принудительной вентиляции фирмы ВЕКО (рис. 10), примененная, например, в холодильнике ВЕКО NCH 5010.

Рис. 10 Система принудительной циркуляции воздуха фирмы ВЕКО

ЭТО ИНТЕРЕСНО:  Что значит снежинка на холодильнике

Источник: https://xn----8sblcraoecflfgcby2b5c8h.dp.ua/stati-o-kholodilnikakh/141-chto-takoe-sistema-no-frost.html

Устройство компрессора холодильника: типы и классификация холодильных компрессоров

Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка.

По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы.

В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.

Кратко о типах оборудования

По принципу работы данное оборудование можно разделить на четыре вида:

  • Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
  • Абсорбционное, для работы использует не электрическую, а тепловую энергию.
  • Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
  • Компрессорное.

Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.

Компрессор для холодильника: принцип работы

Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.

Рис. 1. Принцип работы холодильной установки

Обозначения:

  • А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
  • B – Компрессорный аппарат.
  • С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
  • D – Капиллярная трубка, служит для выравнивания давления.

Теперь рассмотрим, алгоритм работы системы:

  1. При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
  2. Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
  3. Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.

Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.

Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.

Классификация компрессоров в холодильном оборудовании

Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:

  1. Динамический. В таких устройствах циркуляция хладагента производится под воздействием вентилятора. В зависимости от конструкции последнего их принято разделять на осевые и центробежные. Первые устанавливаются внутрь системы, и в процессе работы нагнетают давление. Их принцип работы такой же, как у обычного вентилятора.Осевой компрессор

У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.

Центробежный компрессор в разрезе

Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.

  1. Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
  2. Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.

Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.

Устройство поршневого компрессора холодильника

Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.

Внешний вид поршневого компрессора со снятым верхним кожухом

При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение.

В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления.

Основные элементы поршневой конструкции представлены ниже.

Конструкция поршневого компрессора в виде схемы

Обозначения:

  1. Нижняя часть металлического кожуха.
  2. Крепление статора электромотора.
  3. Статор двигателя.
  4. Корпус внутреннего электромотора.
  5. Крепеж цилиндра.
  6. Крышка цилиндра.
  7. Плита крепления клапана.
  8. Корпус цилиндра.
  9. Поршневой элемент.
  10. Вал с кривошипной шейкой.
  11. Кулиса.
  12. Ползунок кулисного механизма.
  13. Завитая в спираль медная трубка для нагнетания хладагента.
  14. Верхняя часть герметичного кожуха.
  15. Вал.
  16. Крепление подвески.
  17. Пружина.
  18. Кронштейн подвески.
  19. Подшипники, установленные на вал.
  20. Якорь электродвигателя.

В зависимости от конструкции поршневой системы данные устройства делятся на два типа:

  1. Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
  2. Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).

В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.

Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.

Устройство роторных механизмов

Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.

Внешний вид двухшнекового (ротационного) компрессора

Внутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.

Конструкция линейного роторного компрессора в виде схемы

Обозначения:

  1. Отводной патрубок.
  2. Отделитель масла.
  3. Герметичный кожух.
  4. Фиксируемый на кожухе статор.
  5. Обозначение внутреннего диаметра кожуха.
  6. Обозначение диаметра якоря.
  7. Якорь.
  8. Вал.
  9. Втулка.
  10. Лопасти.
  11. Подшипник на валу якоря.
  12. Крышка статора.
  13. Вводная трубка с клапаном.
  14. Камера-аккумулятор.

Устройство инверторного компрессора холодильника

По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.

Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения.

В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии.

Что касается остальных характеристик, то они остаются неизменными.

Рекомендуем изучить:

Источник: https://www.asutpp.ru/ustrojstvo-kompressora-holodilnika.html

Принцип работы бытового холодильника, устройство однокамерного, двухкамерного

Принцип работы холодильника прост, но не всем понятен. В этой статье мы расскажем вам как он устроен и работает, какие их виды бывают и чем отличаются. Эту информацию необходимо знать не только при выборе холодильника!

Из этой статьи вы узнаете, чем отличается работа холодильника с одним и двумя компрессорами. Мы расскажем, как он устроен в зависимости от количества камер, чем отличается инверторный от обычного.

Кратко: принцип работы холодильника для чайников простыми словами

Холодильник не производит холод. Он работает в режиме теплового насоса. Принцип работы холодильника заключается в следующем: он перекачивает тепло из камеры в окружающую среду.

Для того чтобы выполнять такую задачу, в холодильнике присутствуют:

  • Компрессор (один или два);
  • Испаритель;
  • Конденсатор (наружный радиатор);
  • Хладагент, он же фреон.

Чтобы понять, как работает холодильник, вспомним курс физики. При испарении любая жидкость охлаждается. А при сжатии и конденсации нагревается. Для наглядности объясним вам как работает холодильник на примерах:

  1. Газообразный фреон с температурой +5 °С попадает в компрессор;
  2. Компрессор сжимает его так, чтобы он конденсировался в жидкость;
  3. При конденсации фреон нагревается до +40 градусов;
  4. После этого он под давлением попадает в конденсатор, где охлаждается до +25 °С;
  5. Фреон попадает в испаритель, где он расширяется и закипает, так как теперь не находится под давлением;
  6. Температура фреона падает до 0 градусов, он охлаждает камеру холодильника.
  7. В процессе отбора тепла у камеры, фреон нагревается до +5 °С;
  8. Цикл повторяется заново.
ЭТО ИНТЕРЕСНО:  Чем лучше мыть холодильник снаружи

Принцип работы АБХМ — поясняем просто и понятно

Все это возможно благодаря физическим свойствам хладагента. Температура кипения фреона гораздо ниже 0 градусов. поэтому он закипает и испаряется в испарителе. Все цифры мы привели для примера, чтобы вам было понятнее, как устроен холодильник. На деле цикл несколько сложнее.

Виды бытовых холодильников

По своему количеству камер холодильники делятся на:

  • Однокамерные;
  • Двухкамерные;
  • Многокамерные (три и более камер).

Также холодильник может иметь разное количество компрессоров. В обычных аппаратах используется один, но в некоторых моделях бывают два компрессора. От их количества и мощности зависит потребление электроэнергии холодильником.

Однокамерные холодильники

Это наиболее простой аппарат. Чаще в нем только одна камера для хранения продуктов, в которой поддерживается постоянная температура. Но существуют варианты с двумя отделениями – обычным и морозилкой.

Однокамерный холодильник имеет один испаритель. Более низкая температура в морозильной камере обеспечивается тем, что фреон сначала проходит через нее и немного нагревается. После этого он попадает в основной отсек.

Двухкамерные холодильники

В таких агрегатах есть обычная камера, отделенная от морозильной. Их отличие от однокамерных в том, что в каждом отсеке установлен свой испаритель. Это позволяет точно регулировать и поддерживать температурный режим. Двухкамерный холодильник может быть оснащен одним или двумя компрессорами.

Многокамерные холодильники

Такие модели довольно дороги и могут быть трех-, четырех- и пятикамерными. Как и в двухкамерных, в них есть морозильный отсек с минусовой температурой и обычный. Но в дополнение к ним есть отдельные отделения.

Тепловой насос для отопления дома – принцип работы

В многокамерных холодильниках есть нулевой отсек или зона свежести. В них поддерживается отдельный температурный режим. Чаще всего это 0+1 градуса. В трехкамерных такой отсек один, в четырехкамерных – два, в пятикамерных – три.

Каждая зона свежести предназначена для хранения определенных продуктов. Например:

  • Рыбы;
  • Овощей и фруктов;
  • Мясных продуктов.

Устройство холодильника и принцип работы

В этом разделе мы подробно опишем устройство холодильника. Из каких рабочих элементов он состоит и для чего они предназначены.

Компрессор

Это оснащенный специальным механизмом электродвигатель, сжимающий фреон. В компрессоре давление хладагента увеличивается настолько, что он переходит из газообразного состояния в жидкое. При этом его температура существенно повышается.

В зависимости от модели в холодильнике может быть один или два компрессора. В холодильных установках используют следующие виды компрессоров:

  • Роторные;
  • Осевые;
  • Центробежные;
  • Винтовые;
  • Поршневые.

Конденсатор (внешний радиатор)

Конденсатор представляет собой трубку диаметром до 5 мм. По ней проходит жидкий нагретый фреон и охлаждается. В холодильниках большого размера и производительности конденсатор выполнен в виде радиатора.

Испаритель

Попадая в испаритель фреон получает возможность расшириться. При этом его давление падает и хладагент закипает. В процессе испарения его температура существенно снижается. Проходя по испарителю охлажденный фреон отбирает тепло у холодильной камеры.

В разных моделях холодильников может быть от одного до пяти испарителей. Это зависит от количества камер, компрессоров, условий работы и мощности холодильной установки.

Капиллярная трубка

Капиллярная трубка (гидравлический дроссель) устанавливается между конденсатором и испарителем. За счет изменения сечения магистрали она снижает давление фреон. За счет этого он лучше закипает в испарителе.

Фильтр-осушитель

Устанавливается между конденсатором и капиллярной трубкой. Предназначен для предотвращения засорения последней твердыми частицами. По конструкции представляет металлический патрон с двумя молекулярными сетками, между которыми заполнен цеолитом (пермутитом).

Терморегулирующий вентиль (ТРВ, докипатель)

Устройство, предназначенное для предотвращения попадания жидкого фреона в компрессор. если не весь хладагент закипел в испарителе, он докипает в ТРВ. Терморегулирующий вентиль устанавливается между испарителем и компрессором.

Терморегулятор

Терморегулятор служит для запуска цикла охлаждения. Пока температура в камерах находится в пределах нормы, компрессор не работает и фреон не циркулирует по системе. Как только отсеки нагреваются, терморегулятор сигнализирует об этом и холодильник начинает охлаждать камеры.

Принцип работы двухкамерного холодильника с одним компрессором

В двухкамерном холодильнике с одним компрессором установлены два испарителя. Хотя по сути, они являются разными частями одного и того же элемента (см. рис). Первый находится – в морозильной камере, второй – в обычной. Фреон после прохождения через фильтр-осушитель сначала попадает в первый, потом второй.

При попадании в морозильную камеру хладагент отбирает у нее тепло и нагревается. После этого он попадает в основной отсек, где отбирает тепло у него. За счет того, что его температура несколько повысилась после прохождения морозилки, в обычном отсеке температура не опустится ниже 0 градусов.

Принцип работы двухкамерного холодильника с одним компрессором.

Принцип работы холодильной установки с двумя компрессорами

В таких холодильных установках есть два компрессора, каждый из которых работает независимо. Один компрессор обеспечивает работу контура, охлаждающего морозильную камеру. Второй – работает на охлаждение основного отсека.

В холодильниках с двумя компрессорами в каждой камере установлен отдельный испаритель. Они не соединены между собой. За счет раздельных контуров охлаждения, такие холодильники отличаются высоким сроком службы.

Плюс двухкамерного холодильника проявляется в случае утечки фреона или поломки. если хладагент выходит из одного контура, второй продолжает работать. То же самое происходит в случае поломки.

Как работает саморазморозка

Есть два вида систем саморазморозки холодильников:

  • Капельная (Direct Cool);
  • No Frost.

Капельная система работает только в основном отсеке и не может быть установлена в морозилке. Система разморозки Ноу Фрост работает как в основной камере, так и в морозильной.

Капельная система (Direct Cool)

В капельной системе испаритель вмонтирован в заднюю стенку основного отделения холодильника и охлаждает ее. Та, в свою очередь, холодит воздух в отсеке. При таком расположении со временем на стенке образуется конденсат и собирается в капли, которые замерзают и превращаются в лед.

Периодически система отключается и наледь на стенке начинает таять. Капли воды стекают вниз и попадают в специальный желоб. По нему они проходят в поддон, где испаряются из-за тепла, выделяемого компрессором во время работы.

Принцип работы холодильника Ноу Фрост

Принцип работы холодильной установки с системой No Frost следующий. За задней стенкой внутренней камеры и морозилки находится испаритель. В нем закипает фреон и охлаждает окружающий воздух.

Также в нем установлен один или несколько вентиляторов, которые продувают холодный воздух по отсеку с продуктами. При этом иней и лед могут образовываться на испарителе, но не на стенках холодильника.

Также на испарителе установлены от 1 до 3 ТЭНов. Они включаются либо по сигналу датчика, либо раз в несколько часов. При включении ТЭНы растапливают наморозь на испарителе, которая стекает в специальный поддон.

Инверторные и обычные холодильники

Существует два вида компрессоров – обычные и инверторные. Они отличаются внутренним строением и режимом работы. Раньше все холодильники оснащались линейными, но сейчас популярность набирают инверторные.

Обычный компрессор работает в режиме старт-стоп. Например, когда температура в камере поднялась на 1 градус выше нужной, компрессор включается и холодильник начинает охлаждать. Как только температура достигла нужной, он выключается.

Инверторный компрессор работает постоянно, но с небольшой мощностью. Он поддерживает температуру на заданном уровне. При этом суммарное потребление электроэнергии у него ниже, чем у обычного.

Преимущество линейного компрессора в том, что он не испытывает нагрузок при включении и отключении. Соответственно, его срок службы гораздо выше. Но и стоит инверторное оборудование дороже обычного.

Что такое чиллер и как он работает

В этой статье мы описали принцип работы холодильника и затронули другие темы. Надеемся, она была вам полезна. Не забудьте поделиться публикацией с друзьями!

Источник: https://VTeple.xyz/princip-raboty-holodilnika/

Понравилась статья? Поделиться с друзьями:
Freeze
Можно ли заморозить малину без сахара

Закрыть